Авторы |
Gadomskiy Oleg Nikolaevich, Doctor of physical and mathematical sciences, professor, sub-department of radio physics and electronics, Ulyanovsk State University (42 Lva Tolstogo street, Ulyanovsk, Russia), gadomsky@mail.ru
Yakimov Georgiy Vyacheslavovich, Postgraduate student, Ulyanovsk State University (42 Lva Tolstogo street, Ulyanovsk, Russia), revenge13@sibmail.com
Shchukarev Igor' Aleksandrovich, Postgraduate student, Ulyanovsk State University (42 Lva Tolstogo street, Ulyanovsk, Russia), igor.schukarev@gmail.com
|
Аннотация |
Background. The proposed construction of a qubits as fragments of composite nanostructured materials with quasi-zero refractive index allows to realize the reso-nance energy transfer over long distances by selective excitation of one of the qubits using the continuous ultraviolet radiation.
Materials and methods. A new construction of the qubit made of composite ma-terial with quasi-zero-refractive index synthesized by us is represented. Qubit is a fragment of this material with one silver nanoparticle inside a cylinder with a base area and a height of 56 nm, which corresponds to 3 % of weight content of the silver in the composite material with uniformly distributed nanoparticles with a radius of 2.5 nm.
Results. On the basis of the equations of motion for coupled quantum dipoles and integro-differential equations for the electric field, a nonlocal problem was solved, in which one qubit is excited by continuous radiation, and at the location of the other qubit the local field is induced. The distance between the qubits is 5 m. Quantum information is transmitted due to entanglement of quantum states of qubits.
Conclusions. The article shows that the system of two qubits, which are frag-ments of a composite material with a quasi-zero refractive index, is an ideal energy transporter from one qubit to another over long distances. The new construction of a qubit with nanofibers, allowing to implement selective excitation of qubits by exter-nal radiation, was represented.
|
Список литературы |
1. Valiev K. A. Phys. Usp. 1999, vol. 42, p. 607.
2. Valiev K. A. Phys. Usp. 2005, vol. 175, p. 3.
3. Kilin S. Ya. Progress in Optics. 2001, vol. 42, p. 1.
4. Kilin S. Ya., Horochko D. B., Nizovtsev A. P. Quantum cryptography: ideas and prac-tice. Belorusskaya Nauka, Minsk, 2008.
5. Olmschenk S.,Matsukevich D.N.,Maunz P.,Hayes D., Duan L.M., and Monroe C.Science. 2009,vol.323,p.486.
6. Bouwmeester D., Ekert A. K., Zeilinger A. The Physics of Quantum Information. Ber-lin: Springer 2000.
7. Gadomsky O. N., Ushakov N. M., Podvigalkin V. Y., Muzalev P. A., Kulbatsky D.M., Kosobydsky I. D. Nanocomposite Antireflection Coating as a Thick Film and its Pro-duction Method. Patent of Russian Federation No. 2456710, 20 July 2012.
8. Gadomsky O. N., Stepin S. N, Katnov V. E., Rusin A. A., Pereskokov E.A.Opt.Com-mun.2014,vol.315,p.286.
9. Gadomsky O. N., Stepin S. N., Katnov V. E., Zubkov Е. G. J. Appl. Spectrosc. 2013, vol. 80, p. 726.
10. Gadomsky O. N., Altunin K. K. Opt. Commun. 2012, vol. 285, p. 816.
11. Gadomsky O. N., Gadomskaya I. V. J. Exp. Theor. Phys. Lett. 2015, vol. 120 p. 171.
12. Vesseur E. J. R., Coenen T., Caglayan H., Engheta N. and Polman A. Phys. Rev. Lett. 2013, vol. 110, p. 013702.
13. Gadomsky O.N. Phys. Usp. 2000, vol. 43, p. 1071.
14. Gadomsky O. N., Altunin K. K., Ushakov N. M., Kosobudsky I.D., Podvigalkin V. Ya., Kulbatsky D. M. Technical Physics. 2010, vol. 55, p. 996.
|